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Thin films of tantalum were obtained by sput- 
tering tantalum onto glass in a vacuum of 10 .6 

Torr. The thickness of the film was about 500 A, 
with area 25ram x 25 mm. To obtain implanted 
material, tantalum films of 500 A thickness were 
implanted with nitrogen ions of energy 40 keV 
and a dose of t.6 x 104 ions cm -2 . Strips 1 mm 
wide were cut from unimplanted and nitrogen 
implanted tantalum films. They were mounted in 
Philips powder cameras, 11.46 cm diameter. 
CuKa radiation with a nickel filter was used. The 
specimens were not rotated. The specimens were 
then annealed in evacuated quartz tubes at 400, 
500 and 600~ for 1 h. X-ray powder photo- 
graphs were taken after each anneal. 

The d spacings of  the reflection lines from the 
unannealed specimens corresponded to those of 
b c c tantalum and/3-tantalum. Both phases showed 
preferred orientation. After annealing at tempera- 
tures of 400 and 500 ~ C, the X-ray diffraction 
patterns showed little change from those of the 
as-sputtered tantalum. Annealing at 600 ~ C caused 
the rings from b c c tantalum and el-tantalum to 
disappear. The diffraction pattern of  the 
implanted unannealed specimen showed some 
continous rings from TaN. Preferred orientation of 
the /3-tantalum was observed but not of the b c c 
tantalum. Annealing at 600~ caused the TaN 
rings to sharpen, indicating that it had 
recrystallized. 

The dislocation density for b c c crystals can be 
calculated from the equation given by Williamson 
and Smallman [4] as follows: 

g 2 

p = 14.4 b- T 

where p = dislocation density; E = strain value; 
b = Burgers vector. 

It can be seen from Fig. 1 that the microstrain 
dropped by about 25% on heating from room 
temperature to 600 ~ C, thus the dislocation den- 
sity, which varies as the (strain) z , will drop by 
over 40% with a corresponding effect on the 
resistivity. 

The formation of the/3-tantalum in the sput- 
tered tantalum films is in agreement with the 
observations of Read and Altman [5].  They found 
that q3-tantalum is unstable, changing into b c c 
tantalum at ~700 ~ C when heated in a vacuum of 
10 -s Torr. 

It can thus be seen that heat produces many 
complex structural changes in ion-implanted glass 
supported tantalum films. It may be assumed that 
most of these changes will produce corresponding 
changes in the electrical properties of the films. 
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A relationship between undercooling and 
atomized powder diameter 

An expression between undercooling A T, and at- 
omized powder diameter D can be derived if we 
consider that when continuous cooling occurs the 
undercooling will be [ 1 ] 

AT 2 = k ( T )  (1) 

in which k is a constant depending on the system 
being solidified and T is the cooling rate. The above 
equation should be valid for any composition invar- 
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iant transformation in which the nucleation of the 
product phase can be described by classical nucle- 
ation theory [ 1 ]. Equation 1 applies to nucleation 
during continuous cooling and we apply it here to 
undercooled atomized particles experiencing a high 
cooling rate, assuming that the solidification pro- 
cess immediately after nucleation is composition 
invariant. Assuming that a sphere contains negligi- 
ble temperature gradients, the cooling rate 7 ~ for 
convection and radiation cooling will be given by 

1 0 -  6 
- Dp----Cp [he(T- -  T) + eo(T  4 -- 7"o4)1. (2) 
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I n  Equation 2 D and pCp are the diameter and the 
heat capacity per unit volume of the atomized 
droplet, e, a and hc are the emissivity of the pow- 
der, the Stephan-Boltzmann constant and the 
convection heat transfer coefficient, respectively, 
while To is the temperature of the surrounding 
medium. Since one expects that the powder dia- 
meter should be inversely proportional to its velo- 
city, the convection coefficient h e for a sphere 
moving through a gas under turbulent flow for all 
atomization processes can be expressed as [2] 

hc = X/D m . (3) 

In Equation 3 m could be obtained theoretically 
or from the experimental data while X is propor- 
tional to P, where P is the gas pressure and should 
be approximately constant for a given process and 
material. 

Combining Equations 1 to 3 yields the final 
result 

K 6 

e a ( T  4 T o ) l  (4) + 

The values [2] of T = 1773K, e = 0.33, pCp = 
1.27 cal cm -3 K -I , and X = 0.5 x 10 -a calcm -I 
see -1 K -1 for maraging 300 alloy [4] can be used 
in Equation 5, while K can be determined theoret- 
ically or experimentally. 

Equation 4 estimates the amount of undercool- 
ing, assuming it is not very high, if the powder size 
and the rest of the parameters are known. Of inter- 
est in Equation 5 is the prediction that when rad- 
iation cooling dominates we will have that 

D . ~ T  2 = const., (5) 

while for convection cooling we should have 

D m+IAT 2 = const. (6) 

A rough guess for the rotating electrode process 
[2] is that m = 1, so Equation 7 becomes 
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Figure 1 Percentage (%) of undercooled spheres versus 
diameter for maraging 300 alloy atomized in argon. 

D "  A T  = c o n s t .  ( 7 )  

If a process were modified to decrease X, for ex- 
ample by reducing the gas pressure in half, the 
undercooling will be reduced by 1.2. 

Equations 5 and 6 show that for smaller diam- 
eter particles the undercooling increases while for 
larger diameters it decreases. Recent studies [3] for 
maraging 300 alloy atomized in argon (see Fig. I) 
shows a similar trend between the percentage (%) 
of undercooled spheres and sphere diameter. 
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